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2 Departamento de Fı́sica Teórica II, Universidad Complutense, E-28040 Madrid, Spain
3 Dipartimento di Fisica, Universita di Roma III, Roma, Italy

Received 9 March 2001, in final form 29 June 2001
Published 16 November 2001
Online at stacks.iop.org/JPhysA/34/10209

Abstract
The dispersionless limit of the scalar nonlocal ∂-problem is derived. It is
given by a special class of nonlinear first-order equations. A quasiclassical
version of the ∂-dressing method is presented. It is shown that the algebraic
formulation of dispersionless hierarchies can be expressed in terms of properties
of Beltrami-type equations. The universal Whitham hierarchy and, in particular,
the dispersionless KP hierarchy turn out to be rings of symmetries for the
quasiclassical ∂-problem.

PACS number: 02.30.Uk

1. Introduction

Dispersionless or quasiclassical limits of integrable systems have attracted considerable interest
during recent years (see e.g. [1–13] and references therein). Such type of equations and
hierarchies arise as a result of processes of averaging over fast variables or as a formal
quasiclassical limit h̄ (or ε) → 0. The study of dispersionless hierarchies is of great relevance as
they play an important role in the analysis of various problems in different fields of physics and
mathematics such as, for example, the quantum theory of topological fields and strings [14–16],
some models of optical communications [17] or the theory of conformal maps in the complex
plane [18, 19].

Dispersionless hierarchies have been described and analysed using different methods.
In particular, the quasiclassical versions of the inverse scattering transform and Riemann–
Hilbert problem method have been applied to the study of some (1 + 1)-dimensional integrable
equations [11–13, 20, 23]. In contrast, a similar study of the (2 + 1)-dimensional integrable
equations and hierarchies is missing. Our goal is to fill this gap.

In this paper we shall approach the dispersionless hierarchies from the ∂-dressing method.
This method, based on the linear nonlocal ∂-problem, is a very efficient tool for constructing
and solving usual integrable hierarchies (see e.g. [21–23]). We shall demonstrate that this
approach provides us with a new and promising viewpoint of the dispersionless hierarchies.
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First we shall derive the dispersionless (or quasiclassical) version of the ∂-problem for the dKP
hierarchy. It turns out to be given by nonlinear first-order equations of the type

∂S

∂z̄
= W

(
z, z̄,

∂S

∂z

)
. (1)

These type of equations are well known in the theory of complex analysis, in connection with
quasiconformal mappings.

We shall formulate the quasiclassical version of the ∂-dressing method and derive the
dKP hierarchy using these equations. Moreover, we shall show that symmetries of the
quasiclassical ∂-problem are determined by a linear Beltrami equation and that they form
an infinite-dimensional ring structure which constitutes nothing but the dKP hierarchy. In a
more general setting this ring of symmetries coincides with the universal Whitham hierarchy
introduced in [8].

2. Dispersionless KP and universal Whitham hierarchies

For the sake of convenience we remind the reader of some relevant formulae for the standard and
dispersionless KP hierarchies. The standard KP hierarchy written in Lax form (see e.g. [7,10])

∂L

∂tn
= [(Ln)+, L] n = 1, 2, . . . (2)

arises as the compatibility conditions for the system

Lψ = zψ

∂ψ

∂tn
= (Ln)+ψ n = 1, 2, . . .

(3)

where L is a pseudo-differential operator

L = ∂ + u1(t)∂
−1 + u2(t)∂

−2 + · · ·
with

∂ := ∂

∂x
t := (t1 := x, t2, . . .)

where (Ln)+ denotes the pure differential part of Ln and ψ = ψ(z, t) is a KP wavefunction.
The dKP hierarchy is given in Lax form by

∂L
∂Tn

= {(Ln)+,L} n = 1, 2, . . . (4)

where L = L(p,T ) (T := (T1 := X, T2, . . .)) denotes a function which admits an expansion

L = p +
U1(T )

p
+

U2(T )

p2
+ · · · p → ∞ (5)

where (Ln)+ is the polynomial part of Ln as a function of p, and {, } stands for the Poisson
bracket

{f, g} := ∂f

∂p

∂g

∂x
− ∂f

∂x

∂g

∂p
.

This system of equations can be derived as a formal ε → 0 limit of (2) under the change of
variables Tn = εtn, n � 1 [1–10]. In particular, the KP wavefunction is assumed to behave as

ψ

(
z,

T

ε

)
∼ exp

(
S(z,T )

ε
+ O(ε0)

)
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where S can be expanded as

S(z,T ) =
∑
n�1

znTn +
∑
n�1

Sn(T )

zn
z → ∞. (6)

Under these assumptions it is easy to see that (3) reduces to (5) and

∂S

∂Tn

= �n(p,T ) (7)

where

p := ∂S

∂X
(8)

and �(p,T ) := (Ln)+, with L(p,T ) := z(p,T ) being the function provided by solving for
z in (8).

System (7) represents a family of Hamilton–Jacobi equations for S. Moreover, it can be
shown [10] that given a function S of the form (6) which satisfies (7), then the corresponding
function L is a solution of the dKP hierarchy (4). The compatibility conditions for (7) are
given by

∂�m

∂Tm

− ∂�n

∂Tn

+ {�n,�m} = 0 (9)

and represent the Zakharov–Shabat formulation of the dKP hierarchy.
A general scheme for generating dispersionless hierarchies is the universal Whitham

hierarchy [8]. Its starting point is a Zakharov–Shabat system

∂�A

∂TB

− ∂�B

∂TA

+ {�A,�B} = 0 (10)

with�A = �A(p,T )being given meromorphic functions ofp depending on a set of parameters
T . This hierarchy includes as particular cases the dKP, Benney and the dispersionless version
of the two-dimensional Toda lattice.

3. Quasiclassical ∂-problems

The standard KP hierarchy is associated with the following scalar non-local linear ∂ equation
(see e.g. [21–23]) for the KP wavefunction:

∂χ(z, z̄, t)

∂z̄
=

∫ ∫
G

dz′ dz̄′χ(z′, z̄′, t)ψ0(z
′, t)R0(z

′, z̄′, z, z̄)ψ−1
0 (z, t) (11)

where G is a given bounded domain of C, ψ0(z, t) = exp(
∑

n�1 z
ntn) and R0 = R0(z

′, z̄′, z, z̄)
an appropriate function (∂-data). It is assumed that the functionχ has a canonical normalization

χ(z, z̄, t) = 1 +
χ1(t)

z
+

χ2(t)

z2
+ · · · z → ∞.

The corresponding wavefunction of the standard KP hierarchy is then given by ψ = ψ0 · χ .
From (11) it follows that in order to get a non-singular dispersionless limit of the

corresponding solution of the KP hierarchy, the function

u

(
T

ε

)
:= ε

∂

∂T1

∫ ∫
G

dz dz̄
∫ ∫

G

dz′ dz̄′R0(z
′, z̄′, z, z̄)

× exp

(
1

ε
(S0(z

′,T ) − S0(z,T ))

)
S0(z,T ) :=

∑
n�1

znTn (12)
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should have a finite ε → 0 limit. This holds, in particular, for ∂-data of the form

R0(z
′, z̄′, z, z̄) =

∑
k�0

(−1)krk(z, z̄
′)εk−1δ(k)(z′ − z − εαk(z, z̄)) (13)

where rk and αk are arbitrary functions and

δ(k)(z, z̄) := ∂kδ(z, z̄)

∂zk
.

If we now rewrite (11) as

∂ ln χ(z, z̄, T
ε
)

∂z̄
=

∫ ∫
G

dz′ dz̄′ψ
(
z′, z̄′,

T

ε

)
R0(z

′, z̄′, z, z̄)ψ
(
z, z̄,

T

ε

)−1

(14)

and insert a kernel of the form (14), the limit ε → 0 leads to

∂S

∂z̄
= W

(
z, z̄,

∂S

∂z

)
(15)

where

W

(
z, z̄,

∂S

∂z

)
:=

∑
k�0

rk(z, z̄) exp

(
αk(z, z̄)

∂S

∂z

) (
∂S

∂z

)k

. (16)

The above discussion suggests taking equation (15), for appropriate functions W , as
the quasiclassical version of the linear ∂-problem (11). The function S is widely used in
the discussions of the dispersionless limit of the integrable hierarchies [4–10]. Within the
∂-approach it is a non-holomorphic function of the spectral parameter and obeys the nonlinear
∂-equation (15).

The nonlinear Beltrami-type equation (15) is well known in complex analysis. Under
certain conditions on W it belongs to the class of nonlinear elliptic systems on the plane in
the sense of Lavrent’ev [24]. On the other hand, solutions of equations of this type determine
quasi-conformal maps of their domains of definition on the complex plane (see e.g. [24, 25]).
The connection between dispersionless hierarchies and the theory of quasiconformal maps is
an interesting problem which will be considered elsewhere.

4. The quasiclassical ∂-dressing method

Now we will use the ∂-problem (15) to formulate the dKP hierarchy. In what follows we will
have in mind expressions for W in which the dependence on z and z̄ are provided for compact
supported functions so as to allow for solutions of (15) with asymptotic form (6).

Suppose one is given a solution S = S(z, z̄,T ) of (15) which as z → ∞ is of the form (5).
Then

∂

∂z̄

(
∂S

∂Tn

)
= W ′

(
z, z̄,

∂S

∂z

)
∂

∂z

(
∂S

∂Tn

)
n � 1 (17)

where

W ′(z, z̄, λ) := ∂W(z, z̄, λ)

∂λ
. (18)

This means that all time derivatives of S satisfy the same family (dependent on the infinite set
of parameters T ) of linear Beltrami equations:

∂#

∂z̄
= Q(z, z̄,T )

∂#

∂z
(19)
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where

Q(z, z̄,T ) := W ′
(
z, z̄,

∂S

∂z

)
.

Together with ∂S
∂Tn

, any combination

∑
k

Unk
(T )

(
∂S

∂Tnk

)mk

obeys (17) as well. On the other hand, under mild conditions [25, 26], a solution of the linear
Beltrami equation defined on the whole plane C and vanishing at z → ∞ vanishes identically.

These properties are fundamental for our formulation of the dKP hierarchy. Indeed, given
a solution of (15) of the form (5) it then follows that

∂S

∂Tn

= zn +
∑
m�1

Sm(T )

zm
z → ∞ (20)

and, in particular, the function p := ∂S
∂X

can be expanded as

p = z +
∑
n�1

∂XSn

zn
z → ∞. (21)

In this way, if we denote by L(p,T ) the expansion for z obtained by inverting (21), it is clear
from (28) and (21) that

∂S

∂Tn

− (Ln)+ = O

(
1

z

)
z → ∞.

Hence, as
∂S

∂Tn

− (Ln)+

is also a solution of (19) we conclude that S satisfies (7), so that L(p,T ) is a solution of the dKP
hierarchy. Therefore, we see that the quasiclassical ∂-problem (15) leads to a straightforward
formulation of the dKP hierarchy along the standard logic of the ∂-dressing method.

5. Ring of symmetries of the quasiclassical ∂-problem and the universal Whitham
hierarchy

In section 3 we have derived the ∂-problem (15) by starting with the ∂-problem (11) for the
KP hierarchy. One can show that the quasiclassical ∂-problem of the form (15) arise also as
the dispersionless limit of other scalar integrable hierarchies, like the two-dimensional Toda
lattice and the modified KP hierarchy. The only difference consists in the different behaviours
assumed for S at infinity.

Thus the problem (15), taken on some bounded domain G of C, can be regarded as the
starting point of a whole approach to scalar dispersionless hierarchies without any reference to
the linear ∂-problems of the original dispersionfull hierarchies. The main feature of this
approach is that the symmetries (first-order variations δS) of (15) are determined by the
Beltrami equation

∂

∂z̄
(δS) = W ′

(
z, z̄,

∂S

∂z

)
∂

∂z
(δS). (22)

As a consequence, if δS is a solution of (22) and #(ξ) is a differentiable function, then #(δS)

is a solution too. Reciprocally, given two solutions δiS (i = 1, 2) there exists a function #(ξ)

such that δ1S = #(δ2S). Moreover, the product of two symmetries δ1Sδ2S also satisfies (22).
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Therefore, symmetries of the quasiclassical ∂-problem (15) form an infinite-dimensional
ring.

Let us denote by TA the times associated with the corresponding symmetry flows, so that
the infinitesimal symmetries are ∂S

∂TA
. If we mark one of such symmetries ∂S

∂TA0
and denote it

by p, then for any symmetry we can write

∂S

∂TA

= �A(p,T ) (23)

for a certain function �A. Thus, by varying �A one can generate all the symmetries of the ∂-
problem (15) out of one of them p (basically arbitrary). The compatibility conditions for (23)
are

∂�A

∂TB

− ∂�B

∂TA

+ {�A,�B} = 0 (24)

where

{f, g} := ∂f

∂p

∂g

∂A0
− ∂f

∂A0

∂g

∂p
.

The infinite system (24) is exactly the universal Whitham hierarchy. Hence, this
hierarchy describes the infinite-dimensional ring of symmetries of the scalar quasiclassical
∂-problem (15). As it was shown in [8] the universal Whitham hierarchy contains several
relevant dispersionless hierarchies as particular reductions. This means that the quasiclassical
∂-problem (15) has also a universal character.

6. Solutions of dispersionless hierarchies

Quasiclassical ∂-dressing methods based on (15) provide us also with a tool for solving
dispersionless hierarchies. The point is that we can apply the method of characteristics to
solve (15) and then to find solutions S satisfying the appropriate behaviour at ∞.

To illustrate this process let us consider the dKP hierarchy and a ∂-problem of the form

∂S

∂z̄
= θ(1 − zz̄)W0

(
∂S

∂z

)
(25)

where θ(ξ) is the usual Heaviside function and W0(m) is an arbitrary differentiable function.
Observe that (25) implies

∂m

∂z̄
= W ′

0(m)
∂m

∂z
m := ∂S

∂z
|z| < 1

where W ′
0 = dW0

dm . This equation can be solved at once by applying the method of
characteristics, so that the general solution Sin of (25) inside the unit circle |z| < 1 is implicitly
characterized by

Sin = W0(m)z̄ + mz − f (m)

W ′
0(m)z̄ + z = f ′(m)

(26)

where f = f (m) is an arbitrary differentiable function. The solution Sout of (25) outside the
unit circle is any arbitrary analytic function (z̄-independent). However, in order to obtain a
global solution of (25) in the class of locally integrable generalized functions we impose the
continuity of S at the unit circle, so that

Sout(z) = Sin

(
z,

1

z

)
|z| = 1. (27)
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Moreover, as we are dealing with the dKP hierarchy, we require Sout to be of the form

Sout =
∑
n�1

znTn +
∑
n�1

sn(T )

zn
. (28)

On the other hand, from (26), the coefficients of Sout are determined by the identity

∂Sout

∂z
= m0 − W(m0)

z2
m0(z) := m

(
z,

1

z

)
(29)

where m0 is related to the arbitrary function f in (26) as

W ′(m0)

z
+ z = f ′(m0). (30)

In this way we have a solution method for the dKP hierarchy based on solving the ∂-
equation (25). In principle, the process is the following. We first take a certain function
f = f (m,a) depending on m and a certain set of undetermined parameters a = (a1, . . . , an),
and solve for m = m(z, z̄,a) in the second equation of (26). Then the functions Sin(z, z̄,a)

and Sout(z,a) are determined by means of the first equation of (26) and (27), respectively.
Finally, we impose Sout to admit an asymptotic expansion (28) so that we get the parameters
a as functions of the dKP times t.

As an example, let us consider the case W0(m) = m2. Then (25) becomes

Sin = m2z̄ + mz − f (m)

2mz̄ + z = f ′(m).

If we set

f (m) = a

2
m2 + bm + c

then

m = z − b

a − 2z̄
and

S =




1

2

(z − b)2

a − 2z̄
− c |z| � 1

1

2

z(z − b)2

az − 2
− c |z| � 1.

Notice that the regularity of S inside the unit circle requires

|a| > 2 (31)

which is in agreement with the required analyticity of S on |z| > 1. On the other hand, the
linear Beltrami equation for the symmetries of (25) is given by

∂

∂z̄
(δS) = Q(z, z̄)

∂

∂z
(δS) Q(z, z̄) := 2θ(1 − zz̄)

z − b

a − 2z̄
. (32)

We note that, by taking (31) into account, the following bound results:

|Q(z, z̄)| < 2
|b| + 1

|a| − 2
z ∈ C.

In this way, for any k > 0 we have |Q| < k provided k|a| > 2(|b| + k + 1). This means that,
for an appropriate choice of the coefficients (a, b), the linear Beltrami equation (32) satisfies
the conditions assumed in our discussion of section 4.
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Now we have

S = 1

2a
z2 +

(
1

a2
− b

a

)
z +

2

a3
+

b2

2a
− 2b

a2
− c + O

(
1

z

)
z → ∞

so that in order to fit with the dKP hierarchy we have to identify

a = 1

2T2
b = 2T2 − X

2T2

c = 2

a3
+

b2

2a
− 2b

a2
.

In this way, taking into account that

p = ∂Sout

∂X
= z(z − b)

2 − az
bX − cX

we get the following solution L(p,X, T2) of the first two flows of the dKP hierarchy (4):

L = p

2
+ 2T2 +

√
p2

4
− 2T2p − 4T 2

2 − 2X.

A general discussion of the ∂-method of solution for dispersionless hierarchies will be
presented elsewhere.
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